- #1
KFC
- 488
- 4
Homework Statement
Find out the condition for two-plane-wave interference. The two plane waves are given as
[tex]
\vec{E}_1 = E_0\vec{A}\exp(ikz - i\omega t) + c.c.
[/tex]
[tex]
\vec{E}_2 = E_0\vec{B}\exp(ikz - i\omega t + i\phi) + c.c.
[/tex]
where [tex]\vec{A}[/tex] and [tex]\vec{B}[/tex] are complex. All other variables are real.
2. The attempt at a solution
Here is how I do the problem. I first let
[tex]\vec{A} = A\exp(i\alpha)[/tex]
[tex]\vec{B} = B\exp(i\gamma)[/tex]
and define
[tex]F = kz - \omega t, \qquad G = kz - \omega t + \phi[/tex]
so
[tex]
\vec{E}_1 = E_0A \left(\exp[i(F + \alpha)] + \exp[-i(F+\alpha)]\right)
= 2E_0 A\cos(F+\alpha)
[/tex]
[tex]
\vec{E}_2 = E_0B \left(\exp[i(G + \beta)] + \exp[-i(G+\beta)]\right)
= 2E_0 B\cos(G+\beta)
[/tex]
Now, both [tex]\vec{E}_1[/tex] and [tex]\vec{E}_2[/tex] become real. So I can square the total field [tex]\vec{E} = \vec{E}_1 + \vec{E}_2[/tex] directly
[tex]E^2 = E_1^2 + E_2^2 + 2E_1E_2 =
4E_0^2 A^2\cos^2(F+\alpha) + 4E^2_0 B^2\cos^2(G+\beta) + 8E_0^2AB\cos(F+\alpha)\cos(G+\beta)
[/tex]
But I remember the interference term should only contain the
[tex]E_0^2AB\cos(\phi+\alpha-\beta)[/tex]