- #1
Monoxdifly
MHB
- 284
- 0
One of the tangent line equation of the circle \(\displaystyle x^2+y^2+6x-8y+12=0\) at the point whose absis is -1 is ...
A. 2x - 3y - 7 = 0
B. 2x - 3y + 7 = 0
C. 2x + 3y - 5 = 0
D. 2x - 3y - 5 = 0
E. 2x - 3y + 5 = 0
By substituting x = -1, I got:
\(\displaystyle (-1)^2+y^2+6(-1)+8y+12=0\)
\(\displaystyle 1+y^2-6+8y+12=0\)
\(\displaystyle y^2+8y+7=0\)
(y + 1) (y + 7) = 0
y = -1 or y = -7
Then what?
A. 2x - 3y - 7 = 0
B. 2x - 3y + 7 = 0
C. 2x + 3y - 5 = 0
D. 2x - 3y - 5 = 0
E. 2x - 3y + 5 = 0
By substituting x = -1, I got:
\(\displaystyle (-1)^2+y^2+6(-1)+8y+12=0\)
\(\displaystyle 1+y^2-6+8y+12=0\)
\(\displaystyle y^2+8y+7=0\)
(y + 1) (y + 7) = 0
y = -1 or y = -7
Then what?