- #1
alba_ei
- 39
- 1
Homework Statement
[tex]\int \frac{ae^\theta+b}{ae^\theta-b} \, d\theta[/tex]
The Attempt at a Solution
i took [tex]u = ae^\theta-b[/tex] so [tex]e^\theta = \frac{u + b}{a}[/tex] then i substituded back into the integral and iget this
[tex]\int \frac{u + b + b}{u} \, du[/tex]
[tex]\int du +\int \frac{2b}{u} \, du[/tex]
[tex]= u \du + 2b \ln u +C[/tex]
[tex]= u + 2b \ln u +C[/tex]
[tex]= ae^\theta-b + 2b\ln (ae^\theta-b) [/tex]
but the answer of the book is
[tex]\int \frac{ae^\theta+b}{ae^\theta-b} \, d\theta = 2\ln (ae^\theta-b) - \theta + C [/tex]
what did i do wrong?
Last edited: