What is the Correct Value of n in this Given Ratio?

  • MHB
  • Thread starter Albert1
  • Start date
In summary, the formula for finding n for a given ratio is n = a/b, where n is the unknown number, a is the first number in the ratio, and b is the second number in the ratio. To solve for n, plug in the values for a and b and use basic algebraic principles. Decimals or fractions can be used in the ratio. Finding n is significant as it allows you to determine the unknown quantity in a proportional relationship. However, a limitation is that it assumes a linear relationship between the two numbers in the ratio.
  • #1
Albert1
1,221
0
$n=\dfrac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)}$

$find\,\,\, n$
 
Mathematics news on Phys.org
  • #2
Albert said:
$n=\dfrac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)}$

$find\,\,\, n$

we have $x^4+ 324 = (x^2)^2 + 18^2 = (x^2+18)^2 - 36x^2 = (x^2 + 6x + 18)(x^2-6x+18$
using this we get
$10^4 + 324 = (10 * 16 + 18)(10 * 4 + 18)$
$22^4 + 324 = (22 * 28 + 18)(22 * 16 + 18)$
$34^4 + 324 = (34 * 40 + 18)(34 * 28 + 18)$
$46^4 + 324 = (46 * 52 + 18)(46 * 40 + 18)$
so numerator $= (10^4+324)(22^4+324)(34^4+324)(46^4+324)$
$= ( 4 * 10 + 18)(10 * 16 + 18) (16 * 22 + 18) ( 22 * 28 + 18)(28 * 34 + 18) (34 * 40 + 18) (40 * 46 + 18) (46 * 52 + 18)$
now for denominator
$4^4 + 324 = (4 * 10 + 18)( 4 * (-2) + 18)$
$16^4 + 324 = (16 * 22 + 18)( 16 * 10 + 18)$
$28^4 + 324 = (28 * 34 + 18)(28 * 22 + 18)$
$40^4 + 324 = (40 * 46 + 18)(40 * 34 + 18)$
so denominator $= (4^4+324)(16+324)(28+324)(40+324)$
$= ( 4 * (-2) + 18)(4 * 10 +18) (10 * 16 + 18) ( 16 * 22 + 18)(22 * 28 + 18) (28 * 34 + 18) (34 * 40 + 18) (40 *46 + 18)$
so ratio = $\frac{46* 52 +18}{4 * (-2) + 18} = 240$
or n = 240
 
  • #3
kaliprasad said:
we have $x^4+ 324 = (x^2)^2 + 18^2 = (x^2+18)^2 - 36x^2 = (x^2 + 6x + 18)(x^2-6x+18$
using this we get
$10^4 + 324 = (10 * 16 + 18)(10 * 4 + 18)$
$22^4 + 324 = (22 * 28 + 18)(22 * 16 + 18)$
$34^4 + 324 = (34 * 40 + 18)(34 * 28 + 18)$
$46^4 + 324 = (46 * 52 + 18)(46 * 40 + 18)$
so numerator $= (10^4+324)(22^4+324)(34^4+324)(46^4+324)$
$= ( 4 * 10 + 18)(10 * 16 + 18) (16 * 22 + 18) ( 22 * 28 + 18)(28 * 34 + 18) (34 * 40 + 18) (40 * 46 + 18) (46 * 52 + 18)$
now for denominator
$4^4 + 324 = (4 * 10 + 18)( 4 * (-2) + 18)$
$16^4 + 324 = (16 * 22 + 18)( 16 * 10 + 18)$
$28^4 + 324 = (28 * 34 + 18)(28 * 22 + 18)$
$40^4 + 324 = (40 * 46 + 18)(40 * 34 + 18)$
so denominator $= (4^4+324)(16+324)(28+324)(40+324)$
$= ( 4 * (-2) + 18)(4 * 10 +18) (10 * 16 + 18) ( 16 * 22 + 18)(22 * 28 + 18) (28 * 34 + 18) (34 * 40 + 18) (40 *46 + 18)$
so ratio = $\frac{46* 52 +18}{4 * (-2) + 18} = 240$
or n = 240
check your answer
 
  • #4
Albert said:
check your answer

mistake in last step
2410/10 or 241
 

FAQ: What is the Correct Value of n in this Given Ratio?

1. What is the formula for finding n for a given ratio?

The formula for finding n for a given ratio is n = a/b, where n is the unknown number, a is the first number in the ratio, and b is the second number in the ratio.

2. How do you solve for n in a given ratio?

To solve for n in a given ratio, you can use the formula n = a/b. Plug in the values for a and b and then solve for n using basic algebraic principles.

3. Can you use decimals or fractions in the ratio when finding n?

Yes, you can use decimals or fractions in the ratio when finding n. Just make sure to use the same format for both numbers in the ratio.

4. What is the significance of finding n for a given ratio?

Finding n for a given ratio is significant because it allows you to determine the unknown quantity in a proportional relationship. This can be useful in various mathematical and scientific applications.

5. Are there any limitations when using the formula to find n for a given ratio?

One limitation of using the formula to find n for a given ratio is that it assumes a linear relationship between the two numbers in the ratio. This may not always be the case in real-world situations.

Similar threads

Replies
12
Views
2K
Replies
2
Views
4K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
964
Replies
1
Views
1K
Replies
3
Views
969
Replies
3
Views
829
Back
Top