- #1
HDB1
- 77
- 7
- TL;DR Summary
- quotient Lie algebra
Please, in the definition of quotient Lie algebra
If ##I## is an ideal of ##\mathfrak{g}##, then the vector space ##\mathfrak{g} / I## with the bracket defined by:
$$[x+I, y+I]=[x, y]+I, for all x, y \in \mathfrak{g}$$,
is a Lie algebra called the quotient Lie algebra of ##\mathfrak{g}## by ##I##.
Since, ##\mathfrak{s l}_2(\mathbb{K}) \text { is an ideal of the lie algebra } \mathfrak{g l}_2(\mathbb{K}) .##
could we define quotient Lie algebra here, is it the function from ##\mathfrak{g l}_2## to ##\mathfrak{g l}_2 / \mathfrak{s l}_2##,?
if yes, how we get this element, ##x+I =x + \mathfrak{s l}_2, x \in \mathfrak{g l}_2##
Thank you so much,
If ##I## is an ideal of ##\mathfrak{g}##, then the vector space ##\mathfrak{g} / I## with the bracket defined by:
$$[x+I, y+I]=[x, y]+I, for all x, y \in \mathfrak{g}$$,
is a Lie algebra called the quotient Lie algebra of ##\mathfrak{g}## by ##I##.
Since, ##\mathfrak{s l}_2(\mathbb{K}) \text { is an ideal of the lie algebra } \mathfrak{g l}_2(\mathbb{K}) .##
could we define quotient Lie algebra here, is it the function from ##\mathfrak{g l}_2## to ##\mathfrak{g l}_2 / \mathfrak{s l}_2##,?
if yes, how we get this element, ##x+I =x + \mathfrak{s l}_2, x \in \mathfrak{g l}_2##
Thank you so much,