- #1
karush
Gold Member
MHB
- 3,269
- 5
Compute the determinant of the following matrix
$$\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 2 \\-1 & 1 & -3 & 2 \\1 & -1 & 1 & 0
\end{array} \right|
\sim
\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 2 \\-1 & 1 & -3 & 2 \\0 & 0 & -2 & 2
\end{array} \right|
\sim
\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 3 \\-1 & 1 & -3 & -1 \\0 & 0 & -2 & 0
\end{array} \right|$$
then
$$2\left| \begin{array}{cccc}
2 & 1 & 2 \\1 & 2 & 3 \\-1 & 1 & -1
\end{array} \right|
\sim
2\left| \begin{array}{cccc}
0 & 3 & 0 \\1 & 2 & 3 \\-1 & 1 & -1
\end{array} \right|$$
then
$$(-2)(3)\left| \begin{array}{cccc}
1 & 3 \\-1 & -1
\end{array} \right|$$
finally
$$=-6[((1)\cdot(-1))-((-1)\cdot(3))]=-12$$
ok prob some typos but why do the scalers change sign?
https://www.physicsforums.com/attachments/8756
$$\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 2 \\-1 & 1 & -3 & 2 \\1 & -1 & 1 & 0
\end{array} \right|
\sim
\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 2 \\-1 & 1 & -3 & 2 \\0 & 0 & -2 & 2
\end{array} \right|
\sim
\left| \begin{array}{cccc}
2 & 1 & 0 & 2 \\1 & 2 & 1 & 3 \\-1 & 1 & -3 & -1 \\0 & 0 & -2 & 0
\end{array} \right|$$
then
$$2\left| \begin{array}{cccc}
2 & 1 & 2 \\1 & 2 & 3 \\-1 & 1 & -1
\end{array} \right|
\sim
2\left| \begin{array}{cccc}
0 & 3 & 0 \\1 & 2 & 3 \\-1 & 1 & -1
\end{array} \right|$$
then
$$(-2)(3)\left| \begin{array}{cccc}
1 & 3 \\-1 & -1
\end{array} \right|$$
finally
$$=-6[((1)\cdot(-1))-((-1)\cdot(3))]=-12$$
ok prob some typos but why do the scalers change sign?
https://www.physicsforums.com/attachments/8756