- #1
karush
Gold Member
MHB
- 3,269
- 5
Suppose A is a $5\times5$ matrix such that det(A)=2. Let
$$E=\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]$$
then
$\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]=
\left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right]
=-\left[\begin{array}{c}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
=-\det\left[\begin{array}{c}1 & 0 \\ 0 & 1 \\ \end{array}\right]=-(1\cdot1)-(0 \cdot 0)=-1$
so
$det(AE)=(2)(-1)=-2$
ok W|A retured $\det(E)=-1$
But I got confused on the signs and assummed things
saw no need to demonstrate the 0 co factors
suggestions are welcome here..
$$E=\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]$$
then
$\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]=
\left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right]
=-\left[\begin{array}{c}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
=-\det\left[\begin{array}{c}1 & 0 \\ 0 & 1 \\ \end{array}\right]=-(1\cdot1)-(0 \cdot 0)=-1$
so
$det(AE)=(2)(-1)=-2$
ok W|A retured $\det(E)=-1$
But I got confused on the signs and assummed things
saw no need to demonstrate the 0 co factors
suggestions are welcome here..
Last edited: