- #1
kingwinner
- 1,270
- 0
1) "In regression models, there are two types of variables:
X = independent variable
Y = dependent variable
Y is modeled as random.
X is sometimes modeled as random and sometimes it has fixed value for each observation."
I don't understand the meaning of the last line. When is X random? When is X fixed? Can anyone illustrate each case with a quick example?
2) "Simple linear regression model: Y = β0 + β1X + ε
If X is random, E(Y|X) = β0 + β1X
If X is fixed, E(Y|X=x) = β0 + β1x"
Now what's the difference between E(Y|X) and E(Y|X=x)? The above is suuposed to be dealing with 2 separate cases (X random and X fixed), but I don't see any difference...
Most of the time, I am seeing E(Y) = β0 + β1X instead, how come? This is inconsistent with the above. E(Y) is not the same as E(Y|X=x) and I don't think they can ever be equal.
Thanks for explaining!
X = independent variable
Y = dependent variable
Y is modeled as random.
X is sometimes modeled as random and sometimes it has fixed value for each observation."
I don't understand the meaning of the last line. When is X random? When is X fixed? Can anyone illustrate each case with a quick example?
2) "Simple linear regression model: Y = β0 + β1X + ε
If X is random, E(Y|X) = β0 + β1X
If X is fixed, E(Y|X=x) = β0 + β1x"
Now what's the difference between E(Y|X) and E(Y|X=x)? The above is suuposed to be dealing with 2 separate cases (X random and X fixed), but I don't see any difference...
Most of the time, I am seeing E(Y) = β0 + β1X instead, how come? This is inconsistent with the above. E(Y) is not the same as E(Y|X=x) and I don't think they can ever be equal.
Thanks for explaining!
Last edited: