MHB What is the Domain for the Inverse of a One-to-One Function?

  • Thread starter Thread starter ardentmed
  • Start date Start date
  • Tags Tags
    Inverse Proofs
AI Thread Summary
The discussion focuses on determining the domain of the inverse of a one-to-one function. The user successfully proves that the function is one-to-one using the horizontal line test and derives the inverse function as f^-1(x) = ln(-x/(4x-1)). However, there is confusion regarding the domain of the inverse. The correct domain is identified as (0, 1/4), as it satisfies the conditions for the logarithm and the function's behavior. The user is advised that their initial domain assessment was incorrect.
ardentmed
Messages
158
Reaction score
0
Hey guys,

I've a few more questions this time around from my problem set:

(Ignore question 2abc, I only need help with the first one)

Question:
08b1167bae0c33982682_5.jpg


For the first one, in order to prove that a function is one-to-one, f(x1) =/ f(x2) when x1 =/ x2. Thus, the horizontal test applies. So I said that:

(e^a)/(1+4^a) = (e^b)/(1+4^b)
This gave me (e^a)=(e^b)
Hence, a = b and f is one to one.

As for the inverse, I wrote out y=f(x), solved for x in terms of y, and expressed f^-1 as a function of x where x and y interchange. Ultimately, y=(e^x)/(1+4e^x) ended up becoming f^-1(x) = ln(-x/(4x-1))

As for the domain, I know that x< 0 to avoid non-real answers to comply with ln.

Hence the domain is (-infinity, 0)u(1/4, infinity). Which I highly doubt. Any ideas?
Thanks again. I really appreciate the help guys.
 
Mathematics news on Phys.org
Re: Inverse One to One Proofs Help Please

ardentmed said:
Hey guys,

I've a few more questions this time around from my problem set:

(Ignore question 2abc, I only need help with the first one)

Question:For the first one, in order to prove that a function is one-to-one, f(x1) =/ f(x2) when x1 =/ x2. Thus, the horizontal test applies. So I said that:

(e^a)/(1+4^a) = (e^b)/(1+4^b)
This gave me (e^a)=(e^b)
Hence, a = b and f is one to one.

This part you have right.

ardentmed said:
As for the inverse, I wrote out y=f(x), solved for x in terms of y, and expressed f^-1 as a function of x where x and y interchange. Ultimately, y=(e^x)/(1+4e^x) ended up becoming f^-1(x) = ln(-x/(4x-1))

As for the domain, I know that x< 0 to avoid non-real answers to comply with ln.

Hence the domain is (-infinity, 0)u(1/4, infinity). Which I highly doubt. Any ideas?
Thanks again. I really appreciate the help guys.

Your answer is close. While the inverse function is correct, the domain is off; it should be $(0, 1/4)$. The domain of $f^{-1}$ is the set of points $x$ such that $x/(1 - 4x) > 0$. So $x$ belongs to the domain of $f^{-1}$ if and only if

(1) $x > 0$ and $1-4x > 0$, or

(2) $x < 0$ and $1-4x < 0$.

In case (1), $x > 0$ and $x < 1/4$, which is equivalent to saying $x \in (0,1/4)$. In case (2), $x < 0$ and $x > 1/4$, which cannot both happen. So the domain of $f^{-1}$ is the set of points in (1), which is (0, 1/4).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top