- #1
Petar Mali
- 290
- 0
Homework Statement
The space between the two concentric spheres is charged by spatial density of charge [tex]\rho=\frac{\alpha}{r^2}[/tex]. The radius of spheres are [tex]R_1,R_2[/tex]. Integral charge is [tex]Q[/tex]. Find energy of electrostatic field.
Homework Equations
Gauss law
[tex]\oint_S\vec{E} \cdot d{\vec{S}}=\frac{q}{\epsilon_0}[/tex]
[tex]W_E=\frac{1}{2}\epsilon_0\int_VE^24\pi r^2dr[/tex]
The Attempt at a Solution
Using Gauss law I get
[tex]E^{(1)}=0[/tex], for [tex]r<R_1[/tex]
[tex]E^{(2)}(r)=\frac{1}{\epsilon_0}\cdot \frac{Q}{4\pi(R_2-R_1)}\frac{r-R_1}{r^2}[/tex]
for [tex]R_1\leq r \leq R_2[/tex]
[tex]E^{(3)}(r)=\frac{Q}{4\pi\epsilon_0r^2}[/tex], for [tex]r>R_2[/tex]
And get [tex]W_E^{(1)}=0[/tex]
[tex]W_E^{(2)}=\frac{Q^2}{8\pi\epsilon_0(R_2-R_1)}(1+\frac{2R_1}{R_2-R_1}ln\frac{R_2}{R_1}+\frac{R_1}{R_2})[/tex]
[tex]W_E^{(3)}=\frac{Q^2}{8\pi\epsilon_0R_2}[/tex]
This is my solution.
Final solution from book is
[tex]W_E^{(1)}=W_E^{(3)}=0[/tex]
[tex]W_E^{(2)}=\frac{Q^2}{4\pi\epsilon_0(R_2-R_1)}(1+\frac{2R_1}{R_2-R_1}ln\frac{R_2}{R_1})[/tex]
Where I make a mistake?