I What is the equation for line integrals involving the gradient of a function?

WMDhamnekar
MHB
Messages
376
Reaction score
28
TL;DR Summary
Let f (x, y) and g(x, y) be continuously differentiable real-valued functions in a region R.
Show that ##\displaystyle\oint_C f\nabla g \cdot dr = -\displaystyle\oint_C g\nabla f \cdot dr## for any closed curve in R
I don't have any idea to answer this question. So, any math help will be accepted.
I know ##\nabla fg = f\nabla g + g\nabla f \rightarrow (1) ## But I don't understand to how to use (1) here?
 
Last edited:
Physics news on Phys.org
What will ## \displaystyle\oint_C \vec \nabla (fg) \cdot d \vec r ## become?
 
  • Like
Likes WMDhamnekar and Delta2
drmalawi said:
What will ## \displaystyle\oint_C \vec \nabla (fg) \cdot d \vec r ## become?
I think ## \displaystyle\oint_C \nabla (fg) \cdot dr = \displaystyle\oint_C f\nabla g \cdot dr + \displaystyle\oint_C g\nabla f \cdot dr ## for any closed curve.

But, for any closed curve in R , ##\displaystyle\oint_C \nabla (fg) \cdot dr = 0,## Hence, we can deduce that ##\displaystyle\oint_C f\nabla g \cdot dr = -\displaystyle\oint_C g\nabla f \cdot dr ##
Is that logic correct?
 
  • Like
Likes Delta2 and malawi_glenn
WMDhamnekar said:
I think ∮C∇(fg)⋅dr=∮Cf∇g⋅dr+∮Cg∇f⋅dr for any closed curve.
This is valid for all lines.
 
  • Like
  • Informative
Likes WMDhamnekar and Delta2
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top