MHB What is the equation that guarantees a non-real root for every real number p?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that the equation $8x^4-16x^3+16x^2-8x+p=0$ has at least one non-real root for every real number $p$ and find the sum of all the non-real roots of the equation.
 
Mathematics news on Phys.org
Solution suggested by other:
By substituting $x=m+\dfrac{1}{2}$ into the equation yields $8m^4+4m^2+p-\dfrac{3}{2}=0$.

Using the substitution skill one more time (by letting $n=m^2$), we get a quadratic equation in $n$:

$8n^2+4n+p-\dfrac{3}{2}=0$

Solving for $n$ by employing the quadratic formula we get

$n_1=\dfrac{-1+\sqrt{2(2-p)}}{4}$ and $n_2=\dfrac{-1-\sqrt{2(2-p)}}{4}$

If we want real $m$ values, we need $n \ge 0$.

Obviously $n_2=\dfrac{-1-\sqrt{2(2-p)}}{4} <0$, hence it gives only non-real values for $m$ for all real $p$.

Therefore, we can conclude that the equation $8x^4-16x^3+16x^2-8x+p=0$ has at least one non-real root for every real number $p$.
Now, for the second part of the problem, we are asked to find the sum of all the non-real roots of the equation.

[TABLE="class: grid, width: 900"]
[TR]
[TD]For $p \le \dfrac{3}{2}$:[/TD]
[TD]For $p>\dfrac{3}{2}$:[/TD]
[/TR]
[TR]
[TD]If we want $n_1=\dfrac{-1+\sqrt{2(2-p)}}{4}>0$, this is true when $p \le\dfrac{3}{2}$.

That means, the original equation $8x^4-16x^3+16x^2-8x+p=0$ has 2 real roots and 2 non-real roots and its non-real roots take the form $x=m+\dfrac{1}{2}$, where $m=\sqrt{n}=\sqrt{\text{negative value}}=ai$.

The sum of the 2 non-real roots therefore is $\left(ai+\dfrac{1}{2} \right)+\left(-ai+\dfrac{1}{2} \right)=1$.[/TD]
[TD]We will get $n_1=\dfrac{-1+\sqrt{2(2-p)}}{4}<0$.

That means, the original equation $8x^4-16x^3+16x^2-8x+p=0$ has all 4 non-real roots and its non-real roots take the form $x=m_1+\dfrac{1}{2}$ and $x=m_2+\dfrac{1}{2}$, where $m_1=\sqrt{n}=\sqrt{\text{negative value}}=ci$ and $m_2=\sqrt{n}=\sqrt{\text{negative value}}=di$

The sum of the 4 non-real roots therefore is $\left(ci+\dfrac{1}{2} \right)+\left(-ci+\dfrac{1}{2} \right)+\left(di+\dfrac{1}{2} \right)+\left(-di+\dfrac{1}{2} \right)=2$.[/TD]
[/TR]
[/TABLE]

Therefore we get:

$\displaystyle \text{the sum of non-real roots}=\begin{cases}1 & \text{for p} \le \dfrac{3}{2} \\2 & p > \dfrac{3}{2}\\ \end{cases}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top