- #1
paulmdrdo1
- 385
- 0
i tried to solve this and I got stuck somewhere in my solution. I need help.
$\displaystyle \int\frac{3x^5-2x^3+5x^2-2}{x^3+1}dx$
splitting the integrand i get,
$\displaystyle \int\frac{3x^5}{x^3+1}dx-\int\frac{2x^3}{x^3+1}dx+\int\frac{5x^2}{x^3+1}dx-\int\frac{2}{x^3+1}dx$
by letting
$\displaystyle u\,=\,x^3+1$
$\displaystyle du\,=\,3x^2dx$
$\displaystyle dx\,=\,\frac{du}{3x^2}$
$\displaystyle x^3\,=\,u-1$
by substituting i now have,
$\displaystyle \int\frac{3x^5}{u}\frac{du}{3x^2}-\int\frac{2x^3}{u}\frac{du}{3x^2}+\int\frac{5x^2}{u}\frac{du}{3x^2}-\int\frac{2}{u}\frac{du}{3x^2}$
then,
$\displaystyle \int\frac{x^3}{u}du-\frac{2}{3}\int\frac{x}{u}du+\frac{5}{3}\int\frac{du}{u}-\frac{2}{3}\int\frac{du}{u\,x^2}$
since x^3 = u-1, i rewrote the first integral as $\displaystyle \int\frac{u-1}{u}du$
now i have written all the integrals in terms of u except 2nd and 4th integral
$\displaystyle \int\frac{u-1}{u}du-\frac{2}{3}\int\frac{x}{u}du+\frac{5}{3}\int\frac{du}{u}-\frac{2}{3}\int\frac{du}{u\,x^2}$
getting the indefinite integral of 1st and 3rd integral i get,
$\displaystyle \int udu-\int\frac{du}{u}+\frac{5}{3}\int\frac{du}{u} = u-\ln|u|+\frac{5}{3}\ln|u|$
and substituting the value of u i now have,
$\displaystyle x^3-\ln|x^3+1|+\frac{5}{3}\ln|x^3+1|\,=\,x^3+\frac{2}{3}\ln|x^3+1|$
until here i couldn't continue. i don't know what to do with the 2nd and 4th integral.
can you pinpoint where I'm wrong. thanks!
$\displaystyle \int\frac{3x^5-2x^3+5x^2-2}{x^3+1}dx$
splitting the integrand i get,
$\displaystyle \int\frac{3x^5}{x^3+1}dx-\int\frac{2x^3}{x^3+1}dx+\int\frac{5x^2}{x^3+1}dx-\int\frac{2}{x^3+1}dx$
by letting
$\displaystyle u\,=\,x^3+1$
$\displaystyle du\,=\,3x^2dx$
$\displaystyle dx\,=\,\frac{du}{3x^2}$
$\displaystyle x^3\,=\,u-1$
by substituting i now have,
$\displaystyle \int\frac{3x^5}{u}\frac{du}{3x^2}-\int\frac{2x^3}{u}\frac{du}{3x^2}+\int\frac{5x^2}{u}\frac{du}{3x^2}-\int\frac{2}{u}\frac{du}{3x^2}$
then,
$\displaystyle \int\frac{x^3}{u}du-\frac{2}{3}\int\frac{x}{u}du+\frac{5}{3}\int\frac{du}{u}-\frac{2}{3}\int\frac{du}{u\,x^2}$
since x^3 = u-1, i rewrote the first integral as $\displaystyle \int\frac{u-1}{u}du$
now i have written all the integrals in terms of u except 2nd and 4th integral
$\displaystyle \int\frac{u-1}{u}du-\frac{2}{3}\int\frac{x}{u}du+\frac{5}{3}\int\frac{du}{u}-\frac{2}{3}\int\frac{du}{u\,x^2}$
getting the indefinite integral of 1st and 3rd integral i get,
$\displaystyle \int udu-\int\frac{du}{u}+\frac{5}{3}\int\frac{du}{u} = u-\ln|u|+\frac{5}{3}\ln|u|$
and substituting the value of u i now have,
$\displaystyle x^3-\ln|x^3+1|+\frac{5}{3}\ln|x^3+1|\,=\,x^3+\frac{2}{3}\ln|x^3+1|$
until here i couldn't continue. i don't know what to do with the 2nd and 4th integral.
can you pinpoint where I'm wrong. thanks!