- #1
matadorqk
- 96
- 0
Homework Statement
Given that [tex]z=(b+i)^2[/tex] where b is real and positive, find the exact value of b when arg z = 60 degrees.
Homework Equations
z=a+bi
[tex] arg z=arg tan \frac {b}{a} [/tex]
The Attempt at a Solution
so I expanded my [tex]z=(b+i)^{2}[/tex] so its
[tex]z=b^{2}-1+2bi[/tex]
On other terms (please note the b here equals 2b, as it is the imaginary part, not the actual b)
so [tex]tan^{-1}\frac {b}{a}=60[/tex]
[tex]tan60=\frac {b}{a}[/tex]
[tex]atan60=b[/tex]
**Dont get confused,
[tex]a=b^{2}-1[/tex]
[tex]b=2b[/tex]
Therefore, [tex](b^{2}-1)tan60=2b[/tex]
Here is where I am sort of confused, what now?
Last edited: