- #36
Garth
Science Advisor
Gold Member
- 3,581
- 107
Others would disagree with you - it seems the standard model is the one that is "a model that is broken from the start" - it is only fixed by invoking Inflation, DM and DE, all as yet undiscovered by 'laboratory' physics...Wallace said:The problem with this kind of argument is that it ignores the reasons why there is more interest in the 'standard' model. If you look at the broad predictions of the Milne model you very quickly see that for every observation we have the theory and data are in complete conflict. Therefore there isn't much motivation for going any further with the model.
The 'standard' model is in agreement with the data in terms of broad predictions. Hence there is a good reason to investigate further. By checking the minute details we have discovered some anomalous aspects of the model in comparison with the data.
'Doing more work' on a model generally means that you are pushing the boundaries to see where it breaks. Of course we won't bother pushing the boundaries on a model that is broken from the start. Such additional work is not necessary, and indeed would not produce any additional insight. The assumption that more work may fill 'the gaps' is groundless when 'the gaps' are fundamental first order (or even zeroeth order) problems with the model.
From Sethi, Kumar, Pandey & Lohiya's 2005 paper A case for nucleosynthesis in slowly evolving models
Summary
In spite of a significantly different evolution, a linear coasting cosmology can not be ruled out by all the tests we have subjected it to so far.
Linear coasting being extremely falsifiable, it is encouraging to observe its concordance ! In standard cosmology, falsifiability has taken a backstage - one just constrains the values of cosmological parameters subjecting the data to Bayesian statistics. Ideally, one would have been very content with a cosmology based on physics tested in the laboratory. Clearly, standard cosmology does not pass such a test. One needs a mixture of hot and cold dark matter, together with (now) some form of dark energy to act as a cosmological constant, to find any concordance with observations. In other words, one uses observations to parametrize theory in Standard Cosmology. In contrast, a universe that is born and evolves as a curvature dominated model has a tremendous concordance, it does not need any form of dark matter and there are sufficient grounds to explore models that support such a coasting.
Garth