- #1
ergospherical
- 1,072
- 1,365
This paper gives the following expression for the waveform from an in-spiralling compact binary:\begin{align*}
h(t;\boldsymbol{\theta}) = \frac{1}{r} Q(\boldsymbol{\phi}) \mathcal{M}(\pi \mathcal{M} F)^{2/3} \cos \Phi(t)
\end{align*}where
Also, what's the function ##Q## explicitly?
h(t;\boldsymbol{\theta}) = \frac{1}{r} Q(\boldsymbol{\phi}) \mathcal{M}(\pi \mathcal{M} F)^{2/3} \cos \Phi(t)
\end{align*}where
- ##\boldsymbol{\phi} = (\theta, \varphi, \psi, \iota)## is a set of angles describing position & orientation of binary
- ##\mathcal{M} \equiv \mu^{3/5} M^{2/5}## is the chirp mass
- ##F(t)## is the wave frequency & ##\Phi(t) \equiv 2\pi \int F(t) dt## is the phase
Also, what's the function ##Q## explicitly?