A What is the Expression for the Waveform of an In-Spiralling Compact Binary?

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Waveform
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,098
Reaction score
1,385
This paper gives the following expression for the waveform from an in-spiralling compact binary:\begin{align*}
h(t;\boldsymbol{\theta}) = \frac{1}{r} Q(\boldsymbol{\phi}) \mathcal{M}(\pi \mathcal{M} F)^{2/3} \cos \Phi(t)
\end{align*}where
  • ##\boldsymbol{\phi} = (\theta, \varphi, \psi, \iota)## is a set of angles describing position & orientation of binary
  • ##\mathcal{M} \equiv \mu^{3/5} M^{2/5}## is the chirp mass
  • ##F(t)## is the wave frequency & ##\Phi(t) \equiv 2\pi \int F(t) dt## is the phase
I've been trying to find a derivation of this guy for quite a while, with no luck. The references lead to the book "300 years of Gravitation", which I'd have to wait until tomorrow to have a look at.

Also, what's the function ##Q## explicitly?
 
Physics news on Phys.org
(Disclaimer: I am not an expert in this area.) That paper cites an earlier paper (also found on arxiv here), where equation 15 is comparable to OP. The earlier paper points to Kip Thorne's book for the derivation, but also apparently goes into detail about the definition of Q in section IV (edit: see equation 66).
 
  • Informative
  • Like
Likes berkeman and ergospherical
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Replies
4
Views
1K
Replies
16
Views
4K
Replies
11
Views
2K
Replies
2
Views
1K
Replies
6
Views
3K
Replies
21
Views
2K
Back
Top