What is the formula for the norm of a vector cross product?

In summary, the formula for the norm of the cross product of two vectors **a** and **b** in three-dimensional space is given by ||**a** × **b**|| = ||**a**|| ||**b**|| sin(θ), where θ is the angle between the vectors **a** and **b**. This formula indicates that the magnitude of the cross product is equal to the product of the magnitudes of the two vectors and the sine of the angle between them.
  • #1
Lambda96
206
72
Homework Statement
Use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}## to proof ##||\vec{a} \times \vec{b}||=||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}##
Relevant Equations
##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##
Hi everyone,

I'm having problems with task c

Bildschirmfoto 2023-11-16 um 11.04.05.png

In the task, the norm has already been defined, i.e. ##||\vec{c}||=\sqrt{\langle \vec{c}, \vec{c} \rangle }## I therefore first wanted to calculate the scalar product of the cross product, i.e. ##\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle## first

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \vec{e}_k \cdot \epsilon_{ijk}a^{i}b^{j} \vec{e}_k$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \cdot \epsilon_{ijk}a^{i}b^{j}$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ijk} ||a^{i}||^2 ||b^{j}||^2 $$

If I look at my calculation now, I've definitely made a mistake, but I don't know how else to arrive at the desired result.
I know I didn't use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##, but if I take the scalar product with itself, the epsilon would be ##\epsilon_{ijk} \epsilon_{ijk}## and not ##\epsilon_{ijk} \epsilon_{ilm}##, or not?
 
Physics news on Phys.org
  • #3
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes. I think your mistake was in the formula under "relevant equations". It should have been $$\epsilon_{ijk}\epsilon_{ilm}=\delta_{jl} \delta_{km}- \delta_{jm} \delta_{kl} $$ like in ##\delta_{22} \delta_{33}- \delta_{23} \delta_{32}.##
 
  • Like
Likes Lambda96
  • #4
fresh_42 said:
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes.
Typo, but the final expression violates the third commandment.
fresh_42 said:
I think your mistake was in the formula under "relevant equations".
That is a typo, yes, but there are worse mistakes as well.
 
Last edited by a moderator:
  • Like
Likes Lambda96
  • #5
Thank you Orodruin and fresh_42 for your help 👍👍

Thanks also Orodruin for the link, it helped me a lot 👍

I have now proceeded as follows:

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \vec{a} \times \vec{b} \bigr)_i \cdot \bigl( \vec{a} \times \vec{b} \bigr)_i$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} a^{j}b^{k} \epsilon_{ilm} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ilm} a^{j}b^{k} a^{l} b^{m}$$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \delta_{jl} \delta_{km} -\delta_{jm} \delta_{kl} \bigr) a^{j}b^{k} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \delta_{jl} \delta_{km} a^{j}b^{k} a^{l} b^{m} -\delta_{jm} \delta_{kl} a^{j}b^{k} a^{l} b^{m} $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = a^{l}b^{m} a^{l} b^{m} - a^{m}b^{l} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle =\bigl( \vec{a} \cdot \vec{a} \bigr) \bigl( \vec{b} \cdot \vec{b} \bigr) - \bigl( \vec{a} \cdot \vec{b} \bigr) \cdot \bigl( \vec{a} \cdot \vec{b} \bigr) $$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 - ||\vec{a}||^2 \cdot ||\vec{b}||^2 \cos^2{\alpha}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \bigl( 1 - \cos^2{\alpha} \bigr) $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \sin^2{\alpha}$$

$$|| \vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}$$
 
  • Like
Likes Orodruin
  • #6
It's a bit simpler to use the index-free calculus in this case and use the additional rule
$$\vec{u} \cdot (\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}.$$
Setting ##\vec{u}=\vec{a} \times \vec{b}## and ##\vec{v}=\vec{a}## and ##\vec{w}=\vec{b}## this gives
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) =[ (\vec{a} \times \vec{b})\times \vec{a}] \cdot \vec{b}.$$
Now you use the formula for the triple vector product (which is equivalent to the given formula for the Levi-Civita symbols),
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = [\vec{b} (\vec{a} \cdot \vec{a}) - \vec{a} (\vec{a} \cdot \vec{b}] \cdot \vec{b} = \|vec{a} \|^2 \|\vec{b}|^2 [1-\cos^2 \angle (\vec{a},\vec{b})]=\|\vec{a}|^2 \|\vec{b} \|^2 \sin^2 \angle (\vec{a},\vec{b}).$$
Since by definite ##\angle(\vec{a},\vec{b}) \in [0,\pi]## the sine is ##\geq 0## and thus
$$\|\vec{a} \times \vec{b} \| = \|\vec{a} \| \|\vec{b} \| \sin \angle(\vec{a},\vec{b}).$$
 
Last edited by a moderator:

FAQ: What is the formula for the norm of a vector cross product?

What is the formula for the norm of a vector cross product?

The formula for the norm (magnitude) of the cross product of two vectors **A** and **B** is given by ||**A** × **B**|| = ||**A**|| ||**B**|| sin(θ), where θ is the angle between the two vectors.

How do you calculate the norm of a cross product if the vectors are in component form?

If vectors **A** and **B** are given in component form as **A** = (Ax, Ay, Az) and **B** = (Bx, By, Bz), the norm of their cross product can be calculated as ||**A** × **B**|| = √[(AyBz - AzBy)² + (AzBx - AxBz)² + (AxBy - AyBx)²].

What does the norm of a vector cross product represent?

The norm of a vector cross product represents the area of the parallelogram formed by the two vectors. It is a measure of the magnitude of the vector that is perpendicular to the plane containing the two original vectors.

Can the norm of a vector cross product ever be negative?

No, the norm of a vector cross product is always non-negative. It represents a magnitude, which is a scalar quantity and hence cannot be negative.

What happens to the norm of the vector cross product if the two vectors are parallel?

If the two vectors are parallel, the angle θ between them is either 0 or 180 degrees. In both cases, sin(θ) = 0, which means the norm of the cross product is zero. This indicates that the cross product itself is the zero vector.

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
10
Views
6K
Replies
9
Views
2K
Replies
9
Views
1K
Replies
3
Views
1K
Back
Top