- #1
Somali_Physicist
- 117
- 13
It is often reported that the Fourier transform of a constant is δ(f) : that δ denotes the dirac delta function.
ƒ{c} = δ(f) : c ∈ R & f => Fourier transform
however i cannot prove this
Here is my attempt:(assume integrals are limits to [-∞,∞])
ƒ{c} = ∫ce-2πftdt = c∫e-2πftdt = c∫ƒ{δ(f)}e-2πftdt
=> cf{f{δ(f)}} => cδ(-f)
this is incorrect, any help would be appreciated thank you.
ƒ{c} = δ(f) : c ∈ R & f => Fourier transform
however i cannot prove this
Here is my attempt:(assume integrals are limits to [-∞,∞])
ƒ{c} = ∫ce-2πftdt = c∫e-2πftdt = c∫ƒ{δ(f)}e-2πftdt
=> cf{f{δ(f)}} => cδ(-f)
this is incorrect, any help would be appreciated thank you.