- #1
fs0
- 3
- 0
Hey,
does anyone know a general formula for
[tex]\frac{d^n}{dx^n}f(x)^n[/tex]
I couldn't find in any tables I had and I have trouble figuring out the pattern.
in Mathematica gives first four terms:
[tex]f'(x)[/tex]
[tex]2f(x)f^{(2)}(x)+2f^{(1)}(x)^2[/tex]
[tex]18f(x)f^{(1)}(x)f^{(2)}(x)+3f(x)^2f^{(3)}(x)+6 f^{(1)}(x)^3[/tex]
[tex]144f(x)f^{(1)}(x)^2 f^{(2)}(x)+36f(x)^2f^{(2)}(x)^2+48f(x)^2f^{(1)}(x)f^{(3)}(x)+4f(x)^3f^{(4)}(x)+24f^{(1)}(x)^4[/tex]
Thanks for any help.
does anyone know a general formula for
[tex]\frac{d^n}{dx^n}f(x)^n[/tex]
I couldn't find in any tables I had and I have trouble figuring out the pattern.
Code:
Array[D[f[x]^#, {x, #}] &, {4}]
[tex]f'(x)[/tex]
[tex]2f(x)f^{(2)}(x)+2f^{(1)}(x)^2[/tex]
[tex]18f(x)f^{(1)}(x)f^{(2)}(x)+3f(x)^2f^{(3)}(x)+6 f^{(1)}(x)^3[/tex]
[tex]144f(x)f^{(1)}(x)^2 f^{(2)}(x)+36f(x)^2f^{(2)}(x)^2+48f(x)^2f^{(1)}(x)f^{(3)}(x)+4f(x)^3f^{(4)}(x)+24f^{(1)}(x)^4[/tex]
Thanks for any help.
Last edited: