- #1
Aryth1
- 39
- 0
I'm sure that this problem is easier than I am making out to be, but I'm going over some review problems for an exit exam and I'm having a little trouble with this one.
Let the matrix $A$ be given by:
$$A = \begin{pmatrix} 1&4\\ 2&3 \end{pmatrix}$$
Find $A^n$ for general $n$.
I have the first three iterations done, but I've been unable to find the pattern.
$$A^2 = \begin{pmatrix} 1&4\\ 2&3 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 9&16\\ 8&17 \end{pmatrix}$$
$$A^3 = \begin{pmatrix} 9&16\\ 8&17 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 41&84\\ 42&83 \end{pmatrix}$$
$$A^4 = \begin{pmatrix} 41&84\\ 42&83 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 209&416\\ 208&417 \end{pmatrix}$$
Any help in finding the general pattern would be greatly appreciated!
Let the matrix $A$ be given by:
$$A = \begin{pmatrix} 1&4\\ 2&3 \end{pmatrix}$$
Find $A^n$ for general $n$.
I have the first three iterations done, but I've been unable to find the pattern.
$$A^2 = \begin{pmatrix} 1&4\\ 2&3 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 9&16\\ 8&17 \end{pmatrix}$$
$$A^3 = \begin{pmatrix} 9&16\\ 8&17 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 41&84\\ 42&83 \end{pmatrix}$$
$$A^4 = \begin{pmatrix} 41&84\\ 42&83 \end{pmatrix}\begin{pmatrix} 1&4\\ 2&3 \end{pmatrix} = \begin{pmatrix} 209&416\\ 208&417 \end{pmatrix}$$
Any help in finding the general pattern would be greatly appreciated!