- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Let $n$ be a positive integer, and let $\Bbb S^n \to \Bbb S^n$ be a fixed point free continuous map. Show that the map's homological degree is $(-1)^{n+1}$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $n$ be a positive integer, and let $\Bbb S^n \to \Bbb S^n$ be a fixed point free continuous map. Show that the map's homological degree is $(-1)^{n+1}$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!