- #1
Silver Bolt
- 8
- 0
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$
$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$
$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$
$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$
$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$
What should be done from here?
$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$
$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$
$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$
$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$
What should be done from here?