- #1
Dustinsfl
- 2,281
- 5
$(A\cup B)\cap (B\cup C)\cap (C\cup A) = (A\cap B)\cup (A\cap C)\cup (B\cap C)$
For the identity, we will show $(A\cup B)\cap (B\cup C)\cap (C\cup A) \subseteq (A\cap B)\cup (A\cap C)\cup (B\cap C)$ and $(A\cup B)\cap (B\cup C)\cap (C\cup A) \supseteq (A\cap B)\cup (A\cap C)\cup (B\cap C)$.
Let $x\in (A\cup B)\cap (B\cup C)\cap (C\cup A)$.
Then $x\in A\cup B$ and $x\in B\cup C$ and $x\in C\cup A$.
So $x\in A$ or $x\in B$ and $x\in B$ or $x\in C$ and $x\in C$ or $x\in A$.
So I am stuck at this point.
For the identity, we will show $(A\cup B)\cap (B\cup C)\cap (C\cup A) \subseteq (A\cap B)\cup (A\cap C)\cup (B\cap C)$ and $(A\cup B)\cap (B\cup C)\cap (C\cup A) \supseteq (A\cap B)\cup (A\cap C)\cup (B\cap C)$.
Let $x\in (A\cup B)\cap (B\cup C)\cap (C\cup A)$.
Then $x\in A\cup B$ and $x\in B\cup C$ and $x\in C\cup A$.
So $x\in A$ or $x\in B$ and $x\in B$ or $x\in C$ and $x\in C$ or $x\in A$.
So I am stuck at this point.