MHB What is the imaginary part of the given function?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Imaginary
AI Thread Summary
The discussion focuses on deriving the imaginary part of the function f(z) = (z+i)/(iz+1). It demonstrates that Im(f(z)) can be expressed as (1 - |z|^2)/|z - i|^2 by manipulating the function and applying complex conjugate properties. The calculations involve substituting z with its real and imaginary components and simplifying the resulting expressions. The final result confirms the relationship between the imaginary part of f(z) and the magnitudes of z and z - i. This analysis highlights the connection between complex functions and their geometric interpretations in the complex plane.
Poirot1
Messages
243
Reaction score
0
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}
 
Last edited by a moderator:
Mathematics news on Phys.org
$$f(z)=\frac{z+i}{iz+1}$$.

We know that $$z\cdot \bar{z} = |z|^2$$

$$f(z)=\frac{z+i}{iz+1}= \frac{1-iz}{z-i}=\frac{(1-iz)(\bar{z}+i)}{|z-i|^2}=\frac{\bar{z}+i+z-i|z|^2}{|z-i|^2}$$

$$\text{Im} \left( \frac{2\text{Re}(z)+i(1-|z|^2)}{|z-i|^2}\right) = \frac{1-|z|^2}{|z-i|^2}$$
 
Poirot said:
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}

[math]\displaystyle \begin{align*} z &= x + i\,y \textrm{ where } x, y \in \mathbf{R} \\ \\ f(z) &= \frac{z + i}{i\,z + 1} \\ &= \frac{x + i\,y + i}{i\left( x + i\,y \right) + 1} \\ &= \frac{x + i \left( 1 + y \right) }{ 1 - y + i\,x } \\ &= \frac{\left[ x + i \left( 1 + y \right) \right] \left( 1 - y - i\,x \right) }{ \left( 1 - y + i\,x \right) \left( 1 - y - i\,x \right) } \\ &= \frac{ x \left( 1 - y \right) - i\, x^2 + i \left( 1 + y \right) \left( 1 - y \right) + x \left( 1 + y \right) }{ \left( 1 - y \right) ^2 + x^2 } \\ &= \frac{2x + i \left( 1 - x^2 - y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \\ &= \frac{2x}{ x^2 + \left( 1 - y \right)^2 } + i \left[ \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right)^2 } \right] \end{align*}[/math]

So therefore

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \end{align*}[/math]

And since [math]\displaystyle \begin{align*} \left| z \right|^2 = x^2 + y^2 \end{align*}[/math] and [math]\displaystyle \begin{align*} \left| z - i \right| ^2 = x^2 + \left( y - 1 \right) ^2 = x^2 + \left( 1 - y \right) ^2 \end{align*}[/math] that means

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{ 1 - \left| z \right| ^2 }{ \left| z - i \right| ^2 } \end{align*}[/math]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top