mandymandy
- 3
- 0
Use integration to find the area of the region bounded by the given polar curves
r = \frac{3}{(1+cos \theta )}
and
\theta = \frac{\pi}{2}
A = \frac{1}{2} \intf(\theta)^{2}d\theta
My attempt:
(from -\frac{-\pi}{2} to \frac{\pi}{2} )
A = \frac{1}{2}\int (\frac{3}{(1+cos \theta )})^{2} d\theta
A = \frac{9}{2}\int (\frac{1}{(1+cos \theta )})^{2} d\theta
A = \frac{9}{2}\int \frac{1}{(1+cos \theta )^{2}}) d\theta
→(1+cos \theta )^{2} = cos^{2}\theta + 2cos\theta + 1
= 1 - sin^{2}\theta + 2cos\theta + 1
= 2 + 2cos \theta - 1/2 + 1/2 cos 2 \theta
...?
r = \frac{3}{(1+cos \theta )}
and
\theta = \frac{\pi}{2}
A = \frac{1}{2} \intf(\theta)^{2}d\theta
My attempt:
(from -\frac{-\pi}{2} to \frac{\pi}{2} )
A = \frac{1}{2}\int (\frac{3}{(1+cos \theta )})^{2} d\theta
A = \frac{9}{2}\int (\frac{1}{(1+cos \theta )})^{2} d\theta
A = \frac{9}{2}\int \frac{1}{(1+cos \theta )^{2}}) d\theta
→(1+cos \theta )^{2} = cos^{2}\theta + 2cos\theta + 1
= 1 - sin^{2}\theta + 2cos\theta + 1
= 2 + 2cos \theta - 1/2 + 1/2 cos 2 \theta
...?