- #1
karush
Gold Member
MHB
- 3,269
- 5
{W8.7.7} nmh{1000}
$\displaystyle
I=\int \frac{1}{t\left(t^2 - 4 \right)}
\ d{t}
= \frac{1}{8}\ln\left|{1-\frac{4}{{t}^{2}}}\right|+ C$
$$I=\int \frac{1}{t\left(t^2 - 4 \right)}
\ d{t}=-\int\frac{1}{t\left(4-{t}^{2 } \right)}
\ d{t}$$
$\begin{align}\displaystyle
t& = 2\sin\left(u\right)&
dt&= 2\cos\left({u}\right)\ d{u}
\end{align}$
$$\int\frac{2\cos\left({u}\right)}
{2 \sin\left({u}\right)4\cos^2 \left({u}\right)} \ du $$
$\text{I continued but didn't seem to work}$
$\displaystyle
I=\int \frac{1}{t\left(t^2 - 4 \right)}
\ d{t}
= \frac{1}{8}\ln\left|{1-\frac{4}{{t}^{2}}}\right|+ C$
$$I=\int \frac{1}{t\left(t^2 - 4 \right)}
\ d{t}=-\int\frac{1}{t\left(4-{t}^{2 } \right)}
\ d{t}$$
$\begin{align}\displaystyle
t& = 2\sin\left(u\right)&
dt&= 2\cos\left({u}\right)\ d{u}
\end{align}$
$$\int\frac{2\cos\left({u}\right)}
{2 \sin\left({u}\right)4\cos^2 \left({u}\right)} \ du $$
$\text{I continued but didn't seem to work}$
Last edited: