- #1
Dustinsfl
- 2,281
- 5
Find the integral
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$
Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).
So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$
The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$
So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$
Correct?
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$
Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).
So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$
The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$
So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$
Correct?