- #1
karush
Gold Member
MHB
- 3,269
- 5
Whit 8.7.23} trig u subs s87.3 nmh{1000}
$\displaystyle
I=\displaystyle\int {\sin^3\left({t}\right) \cos^4\left({t}\right)} \ d{t}
=\int\ (1-\cos^2\left({t}\right)) \cos^4\left({t}\right) \sin\left({t}\right) \ dt \\
\begin{align}\displaystyle
u& = \cos\left({t}\right)&
du&=-\sin\left({t}\right) \ d{t} \\
\end{align}\\
I=-\displaystyle\int\left(1-u^2\right)u^4 \ du = - \displaystyle\int\left(u^4-u^6\right) \ du \\
\text{integrate }\\
I =-\left[ { \dfrac{u^5}{5}}
-\dfrac{u^7}{7}\right] + C \\
\text{back substitute }\\
I = { \dfrac{\cos^7{t} }{7}}
-\dfrac{\cos^5\left({t}\right)}{5} + C$
Hopefully
$\displaystyle
I=\displaystyle\int {\sin^3\left({t}\right) \cos^4\left({t}\right)} \ d{t}
=\int\ (1-\cos^2\left({t}\right)) \cos^4\left({t}\right) \sin\left({t}\right) \ dt \\
\begin{align}\displaystyle
u& = \cos\left({t}\right)&
du&=-\sin\left({t}\right) \ d{t} \\
\end{align}\\
I=-\displaystyle\int\left(1-u^2\right)u^4 \ du = - \displaystyle\int\left(u^4-u^6\right) \ du \\
\text{integrate }\\
I =-\left[ { \dfrac{u^5}{5}}
-\dfrac{u^7}{7}\right] + C \\
\text{back substitute }\\
I = { \dfrac{\cos^7{t} }{7}}
-\dfrac{\cos^5\left({t}\right)}{5} + C$
Hopefully
Last edited: