- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle
\int_0^4 {\frac{\sqrt{t}}{t+1}}dt
$
$\displaystyle
U=\sqrt{t}\ \ \ t=U^2 \ \ \ dt=2Udu
$
$\displaystyle
\frac{\sqrt{t}}{t+1} \Rightarrow \frac{U}{U^2+1}
$
$\displaystyle
\int_0^4 \frac{U}{U^2+1} 2Udu
$
if ok so far tried $U= sec^2(\theta)$
but couldn't not get answer which is
\int_0^4 {\frac{\sqrt{t}}{t+1}}dt
$
$\displaystyle
U=\sqrt{t}\ \ \ t=U^2 \ \ \ dt=2Udu
$
$\displaystyle
\frac{\sqrt{t}}{t+1} \Rightarrow \frac{U}{U^2+1}
$
$\displaystyle
\int_0^4 \frac{U}{U^2+1} 2Udu
$
if ok so far tried $U= sec^2(\theta)$
but couldn't not get answer which is