- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny\text{Whitman 8.7.26 Integration by Parts} $ nmh{818}
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $
$\begin{align}\displaystyle
u& = t &
dv&=\left(\ln\left({t}\right) \right)^2 \ d{t} \\
du&= dt&
v& =t\left(\ln\left({t}\right)^2 - 2\ln\left({t}\right)+2\right)
\end{align}$
$\text{$v$ reintroduced $t$
so not sure of $u$ $dv$ substitutions } $
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $
$\begin{align}\displaystyle
u& = t &
dv&=\left(\ln\left({t}\right) \right)^2 \ d{t} \\
du&= dt&
v& =t\left(\ln\left({t}\right)^2 - 2\ln\left({t}\right)+2\right)
\end{align}$
$\text{$v$ reintroduced $t$
so not sure of $u$ $dv$ substitutions } $
Last edited: