- #1
The thinker
- 56
- 0
Homework Statement
Write out:
[tex]H_{SE}(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)[/tex]
and
[tex]exp(-iH_{SE}t)(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)[/tex]
Where:
[tex]H_{SE}=\sum_{\alpha,j}\gamma(\alpha,j)P^{(\alpha)}\otimes\left|e_{j}\right\rangle\left\langle e_{j}\right|[/tex]
and
[tex]P^{(\alpha)}=\sum_{i_{\alpha}}\left|i_{\alpha}\right\rangle\left\langle i_{\alpha}\right|[/tex]
([tex]\left|i_{\alpha}\right\rangle[/tex] can be written [tex]\left|\right\alpha,i_{\alpha}\rangle[/tex] where alpha is a quantum number indexed by [tex]i_{\alpha}[/tex] )
The Attempt at a Solution
For the first part I'm fairly sure it comes out as:
[tex]\sum_{\beta,j}\gamma(\beta,j)\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle[/tex]
But the second part I am not sure of, is it something like:
[tex](Cos(t)-i\gamma(\alpha,j)Sin(t))(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)[/tex]
Thanks!