- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let \begin{equation*}v_1:=\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}, v_2:=\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}, v_3:=\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} , w_1:=\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}, w_2:=\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\in \mathbb{R}^4\end{equation*}
I want to calculate the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$.We have \begin{align*}&\text{Lin}(v_1, v_2, v_3)=\left \{\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 : \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \}=\left \{\lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}: \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \} \\ & \text{Lin}(w_1, w_2)=\left \{\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}=\left \{\tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}\end{align*}
How could we continue?
Do we have to solve a system? We take a vector $(a,b,c,d)^T$ and try to write it as a linear combination of the $v_i$'s and then as a linear combination of the $w_i$'s ?
(Wondering)
Let \begin{equation*}v_1:=\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}, v_2:=\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}, v_3:=\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} , w_1:=\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}, w_2:=\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\in \mathbb{R}^4\end{equation*}
I want to calculate the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$.We have \begin{align*}&\text{Lin}(v_1, v_2, v_3)=\left \{\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 : \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \}=\left \{\lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}: \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \} \\ & \text{Lin}(w_1, w_2)=\left \{\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}=\left \{\tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}\end{align*}
How could we continue?
Do we have to solve a system? We take a vector $(a,b,c,d)^T$ and try to write it as a linear combination of the $v_i$'s and then as a linear combination of the $w_i$'s ?
(Wondering)