- #1
photonsquared
- 15
- 0
1. Find [tex]v(t)[/tex] if [tex]V(s)=\frac{2s}{(s^{2}+4)^{2}}[/tex]
Ans: [tex]v(t)=\frac{1}{2}tsin2tu(t)[/tex]
2. Homework Equations :
[tex]V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}[/tex]
[tex]a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}[/tex]
3. Attempt at a solution:
[tex]V(s)=\frac{2s}{(s^{2}+4)^{2}}[/tex]
[tex]V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}[/tex]
[tex]A=\left[2s-B(s^{2}+4)\right]_{s=2i}[/tex]
[tex]A=4i[/tex]
[tex]B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}[/tex]
[tex]B=2[/tex]
[tex]V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}[/tex]
I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.
[tex]?+sin2tu(t)[/tex]
Ans: [tex]v(t)=\frac{1}{2}tsin2tu(t)[/tex]
2. Homework Equations :
[tex]V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}[/tex]
[tex]a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}[/tex]
3. Attempt at a solution:
[tex]V(s)=\frac{2s}{(s^{2}+4)^{2}}[/tex]
[tex]V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}[/tex]
[tex]A=\left[2s-B(s^{2}+4)\right]_{s=2i}[/tex]
[tex]A=4i[/tex]
[tex]B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}[/tex]
[tex]B=2[/tex]
[tex]V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}[/tex]
I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.
[tex]?+sin2tu(t)[/tex]