- #1
paraboloid
- 17
- 0
Let [tex]\bar{z} = x+iy[/tex].
We are given that [tex]x = \frac{z+\bar{z}}{2}[/tex] & [tex]y = \frac{z-\bar{z}}{2i}[/tex].
We are trying to derive [tex]\partial F/\partial\bar{z} = 1/2(\partial F/ \partial x + i \partial F/ \partial y)[/tex], where F(x,y) is some function of two real variables.
Using the chain rule I get [tex]\partial F/\partial\bar{z} = \partial F/\partial x\cdot\partial x/\partial\bar{z} + \partial F/\partial y\cdot\partial y/\partial\bar{z} [/tex].
This is the point where I know something is going wrong.
I replace [tex]\partial x/\partial\bar{z}[/tex] with [tex]\partial \frac{z+\bar{z}}{2}/\partial\bar{z}[/tex], and the same for y with [tex]\frac{z-\bar{z}}{2i}[/tex].
Taking the partial derivatives [tex]\partial \frac{z+\bar{z}}{2}/\partial\bar{z}[/tex] & [tex]\partial \frac{z-\bar{z}}{2i}/\partial\bar{z}[/tex],
I get [tex]\partial F/\partial\bar{z} = \partial F/\partial x\cdot\frac{1}{2}-\partial F/\partial y\cdot\frac{1}{2i} = \frac{1}{2}(\partial F/\partial x - \partial F/i\partial y)[/tex].
What key step am I missing that's leading me to the wrong expression?
We are given that [tex]x = \frac{z+\bar{z}}{2}[/tex] & [tex]y = \frac{z-\bar{z}}{2i}[/tex].
We are trying to derive [tex]\partial F/\partial\bar{z} = 1/2(\partial F/ \partial x + i \partial F/ \partial y)[/tex], where F(x,y) is some function of two real variables.
Using the chain rule I get [tex]\partial F/\partial\bar{z} = \partial F/\partial x\cdot\partial x/\partial\bar{z} + \partial F/\partial y\cdot\partial y/\partial\bar{z} [/tex].
This is the point where I know something is going wrong.
I replace [tex]\partial x/\partial\bar{z}[/tex] with [tex]\partial \frac{z+\bar{z}}{2}/\partial\bar{z}[/tex], and the same for y with [tex]\frac{z-\bar{z}}{2i}[/tex].
Taking the partial derivatives [tex]\partial \frac{z+\bar{z}}{2}/\partial\bar{z}[/tex] & [tex]\partial \frac{z-\bar{z}}{2i}/\partial\bar{z}[/tex],
I get [tex]\partial F/\partial\bar{z} = \partial F/\partial x\cdot\frac{1}{2}-\partial F/\partial y\cdot\frac{1}{2i} = \frac{1}{2}(\partial F/\partial x - \partial F/i\partial y)[/tex].
What key step am I missing that's leading me to the wrong expression?