- #1
Chris L T521
Gold Member
MHB
- 915
- 0
I realized that I had posted solutions last night to the POTWs, but forgot to create the new ones last night...I guess that not sleeping well the night before traveling all day can make you do these kinds of things. Anyways, here's this week's problem.
-----
Problem: Consider the upper half plane with its standard hyperbolic metric $\frac{1}{y^2}(dx^2+dy^2)$. For $k$ a fixed real number, compute the Laplacian of the function $y^k$ relative to this metric.
-----
-----
Problem: Consider the upper half plane with its standard hyperbolic metric $\frac{1}{y^2}(dx^2+dy^2)$. For $k$ a fixed real number, compute the Laplacian of the function $y^k$ relative to this metric.
-----