- #1
karush
Gold Member
MHB
- 3,269
- 5
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$
ok I used W|A to get the indefinit Integral but didn't know the steps
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$
ok I used W|A to get the indefinit Integral but didn't know the steps