- #1
physics604
- 92
- 2
1. Evaluate lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\sqrt{x^2+x+1}[/itex]+x.The answer is -[itex]\frac{1}{2}[/itex].
None.
I multiplied by the conjugate first, so it turns into
lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{(x^2+x+1)-x^2}{\sqrt{x^2+x+1}-x}[/itex]
= lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{x+1}{\sqrt{x^2+x+1}-x}[/itex]
I divide by 1/x on the top, and 1/√x2 on the bottom.
lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{\frac{x}{x}+\frac{1}{x}}{\sqrt{\frac{x^2}{x^2}+\frac{x}{x^2}+ \frac{1}{x^2} }-\frac{x}{x}}[/itex]
= lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{1+\frac{1}{x}}{\sqrt{1+\frac{1}{x}
+\frac{1}{x^2}} -1}[/itex]
At this point, this is all the algebra I can do. So now I have to plug in the -[itex]\infty[/itex].
When x goes to -[itex]\infty[/itex] into [itex]\frac{1}{x}[/itex], I get 0. Same with [itex]\frac{1}{x^2}[/itex], I also get 0.
So wouldn't that make my equation
[itex]\frac{1+0}{(√1+0+0)-1}[/itex]? My answer would be undefined then, not -[itex]\frac{1}{2}[/itex]...
Homework Equations
None.
The Attempt at a Solution
I multiplied by the conjugate first, so it turns into
lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{(x^2+x+1)-x^2}{\sqrt{x^2+x+1}-x}[/itex]
= lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{x+1}{\sqrt{x^2+x+1}-x}[/itex]
I divide by 1/x on the top, and 1/√x2 on the bottom.
lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{\frac{x}{x}+\frac{1}{x}}{\sqrt{\frac{x^2}{x^2}+\frac{x}{x^2}+ \frac{1}{x^2} }-\frac{x}{x}}[/itex]
= lim x[itex]\rightarrow[/itex]-[itex]\infty[/itex] [itex]\frac{1+\frac{1}{x}}{\sqrt{1+\frac{1}{x}
+\frac{1}{x^2}} -1}[/itex]
At this point, this is all the algebra I can do. So now I have to plug in the -[itex]\infty[/itex].
When x goes to -[itex]\infty[/itex] into [itex]\frac{1}{x}[/itex], I get 0. Same with [itex]\frac{1}{x^2}[/itex], I also get 0.
So wouldn't that make my equation
[itex]\frac{1+0}{(√1+0+0)-1}[/itex]? My answer would be undefined then, not -[itex]\frac{1}{2}[/itex]...