- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let
\[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\]
where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate
\[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let
\[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\]
where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate
\[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!