- #1
MountEvariste
- 87
- 0
Challenge Problem: Let $A$ be an $r \times r$ matrix with distinct eigenvalues $λ_1, . . . , λ_r$. For $n \ge 0$, let $a(n)$ be
the trace of $A^n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
the trace of $A^n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
$ \displaystyle
\lim_{n \to \infty}
\lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert
$.
\lim_{n \to \infty}
\lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert
$.
Last edited: