- #1
Dustinsfl
- 2,281
- 5
Prove:
$$
\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
For the first piece, take the summation
$$
P(1,0) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} 1^n\right).
$$
Then $\sum\limits_{n = 1}^{\infty} 1^n = \infty$.
Therefore, we have a positive number plus infinity which is infinity when $r\to 1$ and $\theta = 0$.
For the second piece, take the fractional representation of the Poisson kernel,
$$
P(1,\theta) = \frac{1}{2\pi}\frac{0}{2 - 2\cos\theta} = 0.
$$
Therefore, $P(r,\theta) = 0$ for all $\theta\neq 0$.
That is,
$$\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
$$
\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
For the first piece, take the summation
$$
P(1,0) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} 1^n\right).
$$
Then $\sum\limits_{n = 1}^{\infty} 1^n = \infty$.
Therefore, we have a positive number plus infinity which is infinity when $r\to 1$ and $\theta = 0$.
For the second piece, take the fractional representation of the Poisson kernel,
$$
P(1,\theta) = \frac{1}{2\pi}\frac{0}{2 - 2\cos\theta} = 0.
$$
Therefore, $P(r,\theta) = 0$ for all $\theta\neq 0$.
That is,
$$\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$