- #1
tanzl
- 61
- 0
I have a paradox here. Please tell me what is wrong.
I need to prove that [tex]\lim_{x \rightarrow a-}f(x) = -\infty[/tex]
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
1st case
For all M , where M is a arbitrary large number, there exists [tex]\delta[/tex]>0 such that f(x)<M whenever 0 < a-x < [tex]\delta[/tex]
0 < a-x < [tex]\delta[/tex].
a-[tex]\delta[/tex] < x < a
Therefore x<a ...(1)
Let |x-a| < [tex]\delta[/tex]1 where [tex]\delta[/tex]1 is a positive number such that [tex]\frac{1}{(x-1)^2(x-3)}[/tex] < P where P is a positive number. ...(2)
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
< [tex]\frac{a}{P}[/tex] ... from (1) and (2)
Let [tex]\frac{a}{P}[/tex]=M
f(x) < M
Done.
2nd case (The opposite case)
For all M , where M is a arbitrary large number, there exists [tex]\delta[/tex]>0 such that f(x)>M whenever 0 < a-x < [tex]\delta[/tex]
As above,
0 < a-x < [tex]\delta[/tex].
a-[tex]\delta[/tex] < x < a
Therefore x>a-[tex]\delta[/tex] ...(1)
Let |x-a| < [tex]\delta[/tex]1 where [tex]\delta[/tex]1 is a positive number such that [tex]\frac{1}{(x-1)^2(x-3)}[/tex] > P where P is a positive number. ...(2)
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
> [tex]\frac{a-\delta}{P}[/tex] ... from (1) and (2)
Let [tex]\frac{a-\delta}{P}[/tex]=M
f(x) > M
Done.
I derive the both cases with the same arguments but obtain opposite result. What is wrong with my proof?
I need to prove that [tex]\lim_{x \rightarrow a-}f(x) = -\infty[/tex]
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
1st case
For all M , where M is a arbitrary large number, there exists [tex]\delta[/tex]>0 such that f(x)<M whenever 0 < a-x < [tex]\delta[/tex]
0 < a-x < [tex]\delta[/tex].
a-[tex]\delta[/tex] < x < a
Therefore x<a ...(1)
Let |x-a| < [tex]\delta[/tex]1 where [tex]\delta[/tex]1 is a positive number such that [tex]\frac{1}{(x-1)^2(x-3)}[/tex] < P where P is a positive number. ...(2)
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
< [tex]\frac{a}{P}[/tex] ... from (1) and (2)
Let [tex]\frac{a}{P}[/tex]=M
f(x) < M
Done.
2nd case (The opposite case)
For all M , where M is a arbitrary large number, there exists [tex]\delta[/tex]>0 such that f(x)>M whenever 0 < a-x < [tex]\delta[/tex]
As above,
0 < a-x < [tex]\delta[/tex].
a-[tex]\delta[/tex] < x < a
Therefore x>a-[tex]\delta[/tex] ...(1)
Let |x-a| < [tex]\delta[/tex]1 where [tex]\delta[/tex]1 is a positive number such that [tex]\frac{1}{(x-1)^2(x-3)}[/tex] > P where P is a positive number. ...(2)
f(x) = [tex]\frac{x}{(x-1)^2(x-3)}[/tex]
> [tex]\frac{a-\delta}{P}[/tex] ... from (1) and (2)
Let [tex]\frac{a-\delta}{P}[/tex]=M
f(x) > M
Done.
I derive the both cases with the same arguments but obtain opposite result. What is wrong with my proof?