- #1
Sitingbull
- 3
- 0
I have the following question and I am struggling to find the right answer.
The random variables and are described by a joint PDF which is uniform on the triangular set defined by the constraints 0 <= x <= 1, 0<= theta <= x Find the LMS estimate of theta given that X = x , for in the range [0,1] . Express your answer in terms x.
I started by calculating the joint pdf by first calculating the area of the triangle which is 1/2 * x * 1 = x /2 . The joint pdf will be 1 / (x/2) = 2 / x
Then I integrate over integral over (x to 1) of theta times 2 / x. I got an integral of \theta^ 2 / x which gives me a final answer of (1-X^2) / x
Does that look good or I am missing something ...
Sorry for my notation which lacks LATEX, I am new here.Thank youSB
The random variables and are described by a joint PDF which is uniform on the triangular set defined by the constraints 0 <= x <= 1, 0<= theta <= x Find the LMS estimate of theta given that X = x , for in the range [0,1] . Express your answer in terms x.
I started by calculating the joint pdf by first calculating the area of the triangle which is 1/2 * x * 1 = x /2 . The joint pdf will be 1 / (x/2) = 2 / x
Then I integrate over integral over (x to 1) of theta times 2 / x. I got an integral of \theta^ 2 / x which gives me a final answer of (1-X^2) / x
Does that look good or I am missing something ...
Sorry for my notation which lacks LATEX, I am new here.Thank youSB