- #1
mustang
- 169
- 0
Problem 7.
Given; specific heat of water=4186 J/kg* degrees Celcius
Brass is an alloy made from copper and zinc. A 0.66 kg brasss sample at 98.6 degrees Celciusus is dropped into 2.33 kg of water at 4.6 degrees Celcius. If the equilibrium temperature is 7.0 degrees Celciusus, what is the specific heat capacity of brass? In J/kg*Celciusis.
Problem 9.
A student drops metallic objects into a
224 g steel container holding 325 g of water
at 28±C. One object is a 472 g cube of copper
that is initially at 87 degrees C, and the other is a
chunk of aluminum that is initially at 9 degreesC.
To the students's surprise, the water reaches
a final temperature of 28 degreesC, precisely where
it started.
What is the mass of the aluminum chunk?
Assume the specifc heat of copper and alu-
minum are 387 J/kg degrees C
± C and 899 J/kg degrees C
Problem 12.
Given: specific heat of water = 4186 J/kg degrees Ceicuis
and water's latent heat of fusion = 3.33 *10^5 J/kg.
A 0.012 kg cube of ice at 0.0degrees Ceicuis is added to
0.459 kg of soup at 80.4degrees Ceicuis.
Assuming that the soup has the same specific
heat capacity as water, find the final tem-
perature of the soup after the ice has melted.
Answer in units of degrees Ceicuis.
Given; specific heat of water=4186 J/kg* degrees Celcius
Brass is an alloy made from copper and zinc. A 0.66 kg brasss sample at 98.6 degrees Celciusus is dropped into 2.33 kg of water at 4.6 degrees Celcius. If the equilibrium temperature is 7.0 degrees Celciusus, what is the specific heat capacity of brass? In J/kg*Celciusis.
Problem 9.
A student drops metallic objects into a
224 g steel container holding 325 g of water
at 28±C. One object is a 472 g cube of copper
that is initially at 87 degrees C, and the other is a
chunk of aluminum that is initially at 9 degreesC.
To the students's surprise, the water reaches
a final temperature of 28 degreesC, precisely where
it started.
What is the mass of the aluminum chunk?
Assume the specifc heat of copper and alu-
minum are 387 J/kg degrees C
± C and 899 J/kg degrees C
Problem 12.
Given: specific heat of water = 4186 J/kg degrees Ceicuis
and water's latent heat of fusion = 3.33 *10^5 J/kg.
A 0.012 kg cube of ice at 0.0degrees Ceicuis is added to
0.459 kg of soup at 80.4degrees Ceicuis.
Assuming that the soup has the same specific
heat capacity as water, find the final tem-
perature of the soup after the ice has melted.
Answer in units of degrees Ceicuis.