- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Suppose $\mu$ is a finite Borel measure on $\Bbb R^n$. Define the maximal function of $\mu$ by $$\mathcal{M}\mu(x) = \sup_{0 < r < \infty} \frac{\mu(B(x;r))}{m(B(x;r))}\quad (x\in \Bbb R^n)$$ Here, $m$ denotes the Lebesgue measure on $\Bbb R^n$. Show that if $\mu$ is mutually singular with respect to $m$ (i.e., $\mu \perp m$), then $\mathcal{M}\mu = \infty$ a.e. $[\mu]$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Suppose $\mu$ is a finite Borel measure on $\Bbb R^n$. Define the maximal function of $\mu$ by $$\mathcal{M}\mu(x) = \sup_{0 < r < \infty} \frac{\mu(B(x;r))}{m(B(x;r))}\quad (x\in \Bbb R^n)$$ Here, $m$ denotes the Lebesgue measure on $\Bbb R^n$. Show that if $\mu$ is mutually singular with respect to $m$ (i.e., $\mu \perp m$), then $\mathcal{M}\mu = \infty$ a.e. $[\mu]$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!