- #1
Amer
- 259
- 0
Prove that for
$A \in \mathbb{R}^{n\times n} $
[tex]||A||_{\infty} = \text{max}_{i=1,...,n} \sum_{j=1}^n |a_{ij} | [/tex]
I know that
$||A||_{\infty} = \text{max} \dfrac{||Ax||_{\infty} }{||x||_{\infty}} $
such that $x \in \mathbb{R}^n$
any hints
$A \in \mathbb{R}^{n\times n} $
[tex]||A||_{\infty} = \text{max}_{i=1,...,n} \sum_{j=1}^n |a_{ij} | [/tex]
I know that
$||A||_{\infty} = \text{max} \dfrac{||Ax||_{\infty} }{||x||_{\infty}} $
such that $x \in \mathbb{R}^n$
any hints