- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We consider the function $f(x_1,x_2)=x_1+x_2$ and the (closed) square $D$ with edges $(0,0), (1,0), (1,1), (0,1)$.
Check if $f$ has a maximum in $D$ and if so, find the points of $D$ at which this maximum is achieved.$$\max_{(x_1,x_2) \in D} (x_1+x_2)$$
View attachment 4792
$$(S)\left\{\begin{matrix}
x_1 \geq 0\\
x_2 \geq 0\\
x_1 \leq 1\\
x_2 \leq 1
\end{matrix}\right.$$
so $D=\{ (x_1, x_2) \in \mathbb{R}^2: x_1, x_2 \text{ satisfy } (S)\}$.
$$x_1, x_2 \geq 0$$
Obviously $\max_{(x_1, x_2) \in D} (x_1+x_2) \leq \max_{(x_1, x_2) \in D} x_1 + \max_{(x_1, x_2) \in D} x_2 \leq 1+1=2 $
and $\max_{(x_1, x_2) \in D} (x_1+x_2)=f(1,1)$, so $(1,1)$ is the optimal solution of the linear programming problem.
How do we deduce that the maximum of the given function is $2$. Because of the fact that the maximum is less or equal to $2$ and there is a point $(1,1)$ for which the value $2$ is achieved?
We consider the function $f(x_1,x_2)=x_1+x_2$ and the (closed) square $D$ with edges $(0,0), (1,0), (1,1), (0,1)$.
Check if $f$ has a maximum in $D$ and if so, find the points of $D$ at which this maximum is achieved.$$\max_{(x_1,x_2) \in D} (x_1+x_2)$$
View attachment 4792
$$(S)\left\{\begin{matrix}
x_1 \geq 0\\
x_2 \geq 0\\
x_1 \leq 1\\
x_2 \leq 1
\end{matrix}\right.$$
so $D=\{ (x_1, x_2) \in \mathbb{R}^2: x_1, x_2 \text{ satisfy } (S)\}$.
$$x_1, x_2 \geq 0$$
Obviously $\max_{(x_1, x_2) \in D} (x_1+x_2) \leq \max_{(x_1, x_2) \in D} x_1 + \max_{(x_1, x_2) \in D} x_2 \leq 1+1=2 $
and $\max_{(x_1, x_2) \in D} (x_1+x_2)=f(1,1)$, so $(1,1)$ is the optimal solution of the linear programming problem.
How do we deduce that the maximum of the given function is $2$. Because of the fact that the maximum is less or equal to $2$ and there is a point $(1,1)$ for which the value $2$ is achieved?