- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
Here is this week's POTW:
-----
Given that $\{x_1, x_2, \ldots, x_n\} = \{1, 2, \ldots, n\}$, find,
with proof, the largest possible value, as a function of $n$ (with $n
\geq 2$), of
\[
x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n + x_nx_1.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Given that $\{x_1, x_2, \ldots, x_n\} = \{1, 2, \ldots, n\}$, find,
with proof, the largest possible value, as a function of $n$ (with $n
\geq 2$), of
\[
x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n + x_nx_1.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!