- #1
Saitama
- 4,243
- 93
Let $\vec{a}$, $\vec{b}$ and $\vec{c}$ be three unit vectors such that $\left|\vec{a}+\vec{b}+\vec{c}\right|=\sqrt{3}$ and $\left(\vec{a}\times\vec{b}\right)\cdot \left(\vec{b}\times\vec{c}\right)+\left(\vec{b}\times\vec{c}\right)\cdot \left(\vec{c}\times\vec{a}\right)+\left(\vec{c}\times\vec{a}\right)\cdot \left(\vec{a}\times\vec{b}\right)=\lambda$.
i) Find the maximum value of $\lambda$.
ii) Corresponding to this maximum value of $\lambda$, find
a)The volume of parallelepiped determined by $\vec{a}$, $\vec{b}$ and $\vec{c}$ is $\sqrt{3}$.
b)The value of $\left|\left(2\vec{a}+3\vec{b}+4\vec{c}\right)\cdot \left(\vec{a}\times \vec{b}+5\vec{b}\times \vec{c}+6\vec{c}\times \vec{a}\right)\right|$.
i) Find the maximum value of $\lambda$.
ii) Corresponding to this maximum value of $\lambda$, find
a)The volume of parallelepiped determined by $\vec{a}$, $\vec{b}$ and $\vec{c}$ is $\sqrt{3}$.
b)The value of $\left|\left(2\vec{a}+3\vec{b}+4\vec{c}\right)\cdot \left(\vec{a}\times \vec{b}+5\vec{b}\times \vec{c}+6\vec{c}\times \vec{a}\right)\right|$.