- #1
fayled
- 177
- 0
So you can solve the Stokes equation for flow around a sphere to obtain the pressure in the fluid:
p=p0-3nuacosθ/2r2
where n is the viscosity, u is the speed of the fluid (along the z axis) far away from the sphere, a is the radius of the sphere and r,θ are the usual spherical polar coordinates.
We can also obtain an expression for the velocity field u=(ur,uθ,0) which I won't type here because I'm only concerned about the general principles of something.
My question is about the method for deriving Stokes' law for drag, F=6πnau. The method I have seen is to use the velocity field to work out the viscous stress tensor, which allows you to compute the stress (as a vector) on the sphere due to the fluid. This vector can then be integrated over the sphere to give the required drag force.
However, I don't understand why we can't just integrate the pressure*(-r/r) i.e multiplied by its direction of action on the surface of the sphere, the radial unit vector, and integrate this over the sphere to give the drag force. I have tried and it doesn't seem to give the same result (you don't need to perform the integral, only need notice that the stress vector and the vector obtained from the pressure are not equivalent).
Thanks for any help :)
p=p0-3nuacosθ/2r2
where n is the viscosity, u is the speed of the fluid (along the z axis) far away from the sphere, a is the radius of the sphere and r,θ are the usual spherical polar coordinates.
We can also obtain an expression for the velocity field u=(ur,uθ,0) which I won't type here because I'm only concerned about the general principles of something.
My question is about the method for deriving Stokes' law for drag, F=6πnau. The method I have seen is to use the velocity field to work out the viscous stress tensor, which allows you to compute the stress (as a vector) on the sphere due to the fluid. This vector can then be integrated over the sphere to give the required drag force.
However, I don't understand why we can't just integrate the pressure*(-r/r) i.e multiplied by its direction of action on the surface of the sphere, the radial unit vector, and integrate this over the sphere to give the drag force. I have tried and it doesn't seem to give the same result (you don't need to perform the integral, only need notice that the stress vector and the vector obtained from the pressure are not equivalent).
Thanks for any help :)