- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Find the smallest possible value of $a+b+c+d+e+f+g$ if $a,\,b,\,c,\,d,,\,e,\,f$ and $g$ are positive integers that satisfy
$a<b<c<d<e<f<g<a^2<b^2<c^2<d^2<e^2<f^2<g^2<a^3<b^3<c^3<d^3<e^3<f^3<g^3$
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Find the smallest possible value of $a+b+c+d+e+f+g$ if $a,\,b,\,c,\,d,,\,e,\,f$ and $g$ are positive integers that satisfy
$a<b<c<d<e<f<g<a^2<b^2<c^2<d^2<e^2<f^2<g^2<a^3<b^3<c^3<d^3<e^3<f^3<g^3$
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!